优秀!苏炳添夺冠啦,赛季首秀开门红!******
北京时间3日凌晨,前不久才当选中国田径协会副主席的短跑名将苏炳添在世界田联室内巡回赛瑞典哥德堡站迎来赛季首秀。男子60米比赛中,苏炳添最终以6秒59的成绩夺冠,迎来开门红。
当天的预赛,苏炳添跑出6秒75的成绩,并以小组头名的身份晋级。决赛中,苏炳添起跑迅速占据领先优势,日本选手东田旺洋紧随其后。最终,苏炳添顶住对手的冲击,率先冲过终点。
资料图:日本东京奥运会田径男子100米半决赛,苏炳添9秒83晋级决赛打破亚洲记录,这也是中国人首次登上奥运男子百米决赛赛场。图片来源:ICphoto夺冠后,网友纷纷向苏炳添送上了祝福,甚至有网友表示:“苏炳添是五千多年历史黄种人速度天花板。”
值得一提的是,1989年出生的苏炳添,今年将年满34岁。从籍籍无名的小将到人们耳熟能详的“亚洲飞人”,苏炳添一直致力于在田径赛场诠释中国速度。
东京奥运会男子百米半决赛中,苏炳添以9秒83的成绩打破亚洲纪录,成为首位闯进奥运男子百米决赛的中国人。在彼时男子4×100米接力项目中,他和谢震业、吴智强和汤星强跑出37秒79的成绩,位居第四。
不过东京奥运结束后,国际体育仲裁法庭(CAS)发布公告,认定英国队短跑运动员奇金杜·乌贾在东京奥运会期间违反了反兴奋剂条例,英国队获得的接力银牌被剥夺。加拿大队递补获得银牌,中国队递补获得铜牌。而这也是中国队在奥运会男子4×100米项目上获得的首枚奖牌。
得知这一消息后,三战奥运会的苏炳添难掩激动之情,他直言:“这枚奥运奖牌属于全部中国短跑人。”
从 2009 年全国田径锦标赛的10秒28,到2014 年仁川亚运会的10秒10,再到东京奥运会上那突破性的9秒83……苏炳添从见证者、亲历者,成为了中国田径历史的缔造者。
资料图:图为苏炳添和队友在比赛中。中新社记者 杜洋 摄2023年伊始,苏炳添在运动员之外,又多了一重新的身份:中国田径协会副主席。赛场之外,他不断通过自己的努力为运动员发声。早在2019年,苏炳添就已经是世界田联运动员工作委员会中的一员。
“感谢世界田联、中国田径队的信任与支持!我会倍加珍惜这来之不易的机会,努力做好这份工作,不辜负大家的期望,为广大的运动员发声!”谈及这份荣誉,苏炳添更愿意将其称之为责任。”
虽然身兼数职,但作为一名职业运动员,苏炳添依旧拥有一颗突破自我的心。去年底到今年初的冬训,苏炳添投入到完整的赛季备战中。
资料图:暨南大学体育学院副教授苏炳添在课堂上指导学生进行基础热身。中新社记者 陈骥旻 摄农历新年刚刚结束,苏炳添就早早开启了新的赛季。本次亮相室内巡回赛瑞典哥德堡站,也是苏炳添时隔三年再度踏上欧洲赛场。按照计划,苏炳添还将参加接下来的法国蒙德维尔和列万的两站比赛。
本赛季前三站室内巡回赛评级分别为D类、B类和A类,即比赛竞争力逐渐上涨。从小型室内赛开启新赛季,再向更高强度的比赛过渡,苏炳添一步一个脚印,似乎正在向着更大的目标迈进。
今年下半年的田径世锦赛、明年的巴黎奥运会,不服老的苏炳添可能为国人带来更大的惊喜。(记者 邢蕊)
科学家成功合成铹的第14个同位素****** 超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素。铹-251具有α衰变性,可以发射出两个不同能量的α粒子。 超重元素的合成及其结构研究是当前原子核物理研究的一个重要前沿领域。铹是可供合成并进行研究的一种超镄元素,引起了人们极大的兴趣。 近日,科研人员利用美国阿贡国家实验室充气谱仪(AGFA)成功合成了超镄新核素铹-251。相关成果发表于核物理学领域期刊《物理评论C》。 此次合成铹的新同位素,运用了什么技术方法?合成得到的铹-251,具有什么基本特征?合成的铹-251对于物理、化学等学科的研究来说具有什么意义?针对上述问题,记者采访了这一工作的主要完成人之一,中国科学院近代物理研究所副研究员黄天衡。 不断进行探索,再次合成铹同位素 铹的化学符号为Lr,原子序数为103,是第11个超铀元素,也是最后一个锕系元素。“一般来说,原子序数大于铹的元素被称为超重元素。”黄天衡介绍。 质子数相同而中子数不同的同一元素的不同核素互称为同位素。同一种元素的同位素在化学元素周期表中占有同一个位置,同位素这个名词也因此而得名。 103号元素由阿伯特·吉奥索等科研人员于1961年首次合成。为纪念著名物理学家欧内斯特·劳伦斯,103号元素被命名为铹。锕系元素是元素周期表ⅢB族中原子序数为89—103的15种化学元素的统称,其中,铹元素在锕系元素中排名最后。 截至目前,科研人员们共合成了铹的14个同位素,质量数分别为251—262、264、266。目前合成的铹的14个同位素中,铹-251至铹-262是在实验中通过熔合反应直接合成的,铹-264和铹-266则是将原子序数更高的核素通过衰变生成的。 目前,铹的化学研究中最常使用的同位素是铹-256和铹-260。科研人员通过化学实验证实铹为镥的较重同系物,具有+3氧化态,可以被归类为元素周期表第七周期中的首个过渡金属元素。由于铹的电子组态与镥并不相同,铹在元素周期表中的位置可能比预期的更具有波动性。在核结构研究方面,受限于合成截面等原因,目前的研究仅集中在铹-255上。然而即使是铹-255,其结构能级的指认目前也还存有争议。 通过熔合反应,形成新的原子核 铹和其他原子序数大于100的超镄元素一样,无法通过中子捕获生成。目前铹只能在重离子加速器中通过熔合反应合成。由于原子核都具有正电荷而会相互排斥,因此,只有当两个原子核的距离足够近的时候,强核力才能克服上述排斥并发生熔合。粒子束需要通过重离子加速器进行加速。在轰击作为靶的原子核时,粒子束的速度必须足够大,以克服原子核之间的排斥力。 “仅仅靠得足够近,还不足以使两个原子核发生熔合。两个原子核更可能会在极短的时间内发生裂变,而非形成单独的原子核。”黄天衡介绍,如果这两个原子核在相互靠近的时候没有发生裂变,而是熔合形成了一个新的原子核,此时新产生的原子核就会处于非常不稳定的激发态。为了达到更稳定的状态,新产生的原子核可能会直接裂变,或放出一些带有激发能量的粒子,从而产生稳定的原子核。 在此次实验中,科研人员利用美国阿贡国家实验室ATLAS直线加速器提供的钛-50束流轰击铊-203靶,通过熔合反应合成了目标核铹-251。这个新的原子核产生后,会和其他反应产物一起被传输到充气谱仪(AGFA)中。在充气谱仪(AGFA)中,铹-251会被电磁分离出来,并注入到半导体探测器中。探测器会对这个新原子核注入的位置、能量和时间进行标记。 “如果这个原子核接下来又发生了一系列衰变,这些衰变的位置、能量和时间将再次被记录下来,直至产生了一个已知的原子核。该原子核可以由其所发生的衰变的特定特征来识别。”黄天衡说。根据这个已知的原子核以及之前所经历的系列连续衰变的过程,科研人员可以鉴别注入探测器的原始产物是什么。 超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素(具有相同中子数的核素),还是利用充气谱仪(AGFA)合成的首个新核素。目前的实验结果表明,铹-251具有α衰变性,可以发射出两个不同能量的α粒子。 拓展新的领域,推动超重核理论研究 由于形变,若干决定超重核稳定岛位置的关键轨道能级会降低到质子数Z约等于100、中子数N约等于152核区的费米面附近。对于这一核区的谱学研究可以对现有描述稳定岛的各个理论模型进行严格检验,从而进一步了解超重核稳定岛的相关性质。由于上述原因,对于这一核区的谱学研究是当下探索超重核结构性质的热点课题。 此前的理论模型均无法准确地描述这一核区铹的质子能级演化,相关的实验数据十分有限。“本次实验的初衷为把铹的结构研究进一步拓展到丰质子区,尝试开展系统性的研究。”黄天衡表示。 研究结果表明,形成超重核稳定岛的关键质子能级在铹的丰质子同位素中存在能级反转现象。此外,研究人员还通过推转壳模型下粒子数守恒方法(PNC-CSM)较好地描述了这一现象,并指出了ε_6形变在这一核区的质子能级演化中起到的重要作用。 “此次研究指出了ε_6形变在铹的丰质子核区的质子能级演化中起到的重要的作用,对现有的理论研究提出了新的挑战,将推动超重核领域相关理论研究的发展。”黄天衡说。(记者颉满斌) (文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |